2,110 research outputs found

    No Internal Regret via Neighborhood Watch

    Get PDF
    We present an algorithm which attains O(\sqrt{T}) internal (and thus external) regret for finite games with partial monitoring under the local observability condition. Recently, this condition has been shown by (Bartok, Pal, and Szepesvari, 2011) to imply the O(\sqrt{T}) rate for partial monitoring games against an i.i.d. opponent, and the authors conjectured that the same holds for non-stochastic adversaries. Our result is in the affirmative, and it completes the characterization of possible rates for finite partial-monitoring games, an open question stated by (Cesa-Bianchi, Lugosi, and Stoltz, 2006). Our regret guarantees also hold for the more general model of partial monitoring with random signals

    Fast Ridge Regression with Randomized Principal Component Analysis and Gradient Descent

    Full text link
    We propose a new two stage algorithm LING for large scale regression problems. LING has the same risk as the well known Ridge Regression under the fixed design setting and can be computed much faster. Our experiments have shown that LING performs well in terms of both prediction accuracy and computational efficiency compared with other large scale regression algorithms like Gradient Descent, Stochastic Gradient Descent and Principal Component Regression on both simulated and real datasets

    Calibration: Respice, Adspice, Prospice

    Get PDF
    “Those who claim for themselves to judge the truth are bound to possess a criterion of truth.” JEL Code: C18, C53, D89calibration, prediction
    corecore